lunes, 10 de marzo de 2014

Datos agrupados


La estadística descriptiva es una gran parte de la estadística que se dedica a recolectar, ordenar, analizar y representar un conjunto de datos, con el fin de describir apropiadamente las características de este. Este análisis es muy básico. Aunque hay tendencia a generalizar a toda la población, las primeras conclusiones obtenidas tras un análisis descriptivo, es un estudio calculando una serie de medidas de tendencia central, para ver en qué medida los datos se agrupan o dispersan en torno a un valor central. Esto es lo que podría ser un concepto aproximado.

Los conceptos estadísticos se han trabajado intuitivamente desde la antigüedad, las primeras culturas recopilaban datos poblacionales por medio de censos como los realizados en Egipto por Moisés (según consta la Biblia) y el empadronamiento que fue efectuado por los romanos en Judea.

A partir del siglo XIX , entre otros, con el aporte de Adolphe Quetelet (1796-1874), se crearon diferentes métodos de cálculo de probabilidades para determinar y analizar el tipo de datos que regulan algunos fenómenos.

Datos agrupados


1.- su fin es resumir la información.

2.- generalmente, los elementos son de mayor tamaño, por lo cual requieren ser agrupados, esto implica: ordenar, clasificar y expresar los en una tabla de frecuencias.

3.- se agrupa a los datos, si se cuenta con 20 o más elementos. Aunque contemos con más de 20 elementos, debe de verificarse que los datos n sean significativos, Esto es: que la información sea “repetitiva”, también debemos de verificar que los datos puedan clasificarse. Y que dicha clasificación tiene coherencia y lógica (de acuerdo a lo que se nos esta pidiendo) .
Una vez que ya hemos ordenado y clasificado, presentaremos la información obtenida mediante una ”tabla de frecuencias ”


4.- la agrupación de los datos puede ser simple o mediante intervalos de clase.





miércoles, 5 de marzo de 2014

Distribución binomial

introducción
En estadística, la distribución binomial es una distribución de probabilidad discreta que mide el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos. Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, sólo son posibles dos resultados. A uno de estos se denomina éxito y tiene una probabilidad de ocurrencia p y al otro, fracaso, con una probabilidad q = 1 - p. En la distribución binomial el anterior experimento se repite n veces, de forma independiente, y se trata de calcular la probabilidad de un determinado número de éxitos. Para n = 1, la binomial se convierte, de hecho, en una distribución de Bernoulli.
Existen muchas situaciones en las que se presenta una experiencia binomial. Cada uno de los experimentos es independiente de los restantes (la probabilidad del resultado de un experimento no depende del resultado del resto). El resultado de cada experimento ha de admitir sólo dos categorías (a las que se denomina éxito y fracaso). Las probabilidades de ambas posibilidades han de ser constantes en todos los experimentos (se denotan como p y q o p y 1-p).
Se designa por X a la variable que mide el número de éxitos que se han producido en los n experimentos.
Cuando se dan estas circunstancias, se dice que la variable X sigue una distribución de probabilidad binomial, y se denota B(n,p).
Las siguientes imágenes son algunos ejercicios que hemos realizado en la clase de estadística, en la cual, como pueden notar, utilizamos la siguiente formula:


estos son los ejercicios:






Distribución de Bernoulli


En teoría de probabilidad y estadística, la distribución de Bernoulli (o distribución dicotómica), nombrada así por el matemático y científico suizo Jakob Bernoulli, es una distribución de probabilidad discreta, que toma valor 1 para la probabilidad de éxito (p) y valor 0 para la probabilidad de fracaso (q=1-p).
Si X es una variable aleatoria que mide "número de éxitos", y se realiza un único experimento con dos posibles resultados (éxito o fracaso), se dice que la variable aleatoria X, se distribuye como una Bernoulli de parámetro p.
Moda:
0 si q > p (hay más fracasos que éxitos)
1 si q < p (hay más éxitos que fracasos)

0 y 1 si q = p (los dos valores, pues hay igual número de fracasos que de éxitos)

Burocracia

La burocracia es la organización o estructura organizativa caracterizada por procedimientos explícitos y regularizados, división de responsabilidades y especialización del trabajo, jerarquía y relaciones impersonales.